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Abstract  

Recently, possible variations of 'gravitational constant' G have been measured, which can be 
explained by the expansion of the universe. Usually cosmological models are built with "dark 
energy” in order to explain why the expansion of the universe is not slowing by the 
gravitational action. In this paper we propose an alternative model to explain the variation of G 
with the expansion of the universe, without the need to postulate the existence of dark energy. 
The model is based on a relativistic adaptation of model of ‘cosmological balloon’. The model 
provides an explanation for the ‘gravitational constant’ and its variation. In fact, the predicted 
value of the relative variation (G-1dG/dt = 7.3 · 10-11 yr-1) is consistent with most precise 
observations. Another result of this work is the obtaining of a value for the Hubble parameter 
equal to 71.3 ± 0.6 km·s-1·Mpc-1, which is consistent with the currently observed value (71 ± 4 
km·s-1·Mpc-1). In addition, the model gives theoretical values for the universe energy 
(4.10 · 1053 kg), as well as other cosmological quantities, such as the minimum measurable 
mass ((1.36 ± 0.01) · 10-67 kg) and the minimum time interval (1.4·10-105sec). 
 
Keywords: Varying G · Balloon model · Expanding universe 

 
 
1 Introduction 
 
The observation of all physical quantities, including time and energy, seem to be affected by a 
quantum phenomenon of delocalization (Weinberg, 1995), so it seems that the cosmological equations 
must also be submitted to process quantitation (Carlip 2001; Rovelli, 2004). But first, it is necessary to 
better understand the expansion of the universe and the origin and evolution of the coupling constant 
of gravitation, G. 

Dirac (1938) was probably the first to suggest the possibility that G might vary depending on the 
age of the universe, specifically proposed that G is a function of inverse time. This theory was 
developed decades later by Bran and Dicke (1961). Contrary to this, other authors propose that G 
increases with age of the universe (Helling et al. 1983; Abdel-Rahman, 1990; Massa, 1997; Arbad, 
2003). At present, many authors conclude that measuring is a variation of G, but there is no consensus 
on the sign nor the magnitude (Salam and Wigner, 1972, Müller et al. 1991; Demarque et al. 1994; 
Garcia-Berro et al. 1995; Thorsett, 1996; Benvenuto et al., 1999; Olive et al., 2002). 

Moreover, at present there is a significant advance in the measure of cosmological parameters, and 
it has obtained results confused for the density of the universe and the expansion. Specifically, a 
density equal to the critical is found, but with a expansion that is not slowing down (Tegmark et al. 
2004; Spergel et al. 2007; Hinshaw et al., 2009). To explain the results, it has been necessary to 
introduce the concept of dark energy, so that now the expansion is guaranteed by the acceleration 
caused by such energy, thus compensating to the gravitational attraction of the critical density. 

In modern cosmology, four macroscopic dimensions is commonly used, as well as the proposals 
on the microscopic scale of Kaluza-Klein theory and string theory (Green et al. 1987; Wuensch, 2003). 
These macroscopic dimensions can be curved by the effect of energy (Einstein, 1916; O'Neill, 1983), 
so usually it can build models of expansion of the universe by considering the mass-energy that exists. 
But today, the postulate of the existence of "dark energy" (not observable) has been necessary to 
explain the fact that the expansion of the universe is not slowing for the gravitational action.  



2 
 

In this paper we propose an alternative model to explain the relationship between the variation of 
G and the expansion of the universe, without the need to postulate the existence of dark energy. The 
model is based on a relativistic adaptation of the cosmological ballon model (Eddington, 1933). 

The cosmological model of the balloon was used to explain Hubble's law (1937), that is made 
popular by Eddington (1933) and Hoyle (1960), who explained that, where galaxies drawn on the 
surface of a balloon that is inflated, these are separated from each other in a way similar to how the 
universe expand. Therefore, we can make the analogy that the surface of the globe (2D) is the 
hypersurface (3D) of the universe, so that the radius of the expansion is function of time. The act of 
inflating the balloon itself is a temporal dimension, but the fact that the balloon should be a curved 
surface (2D) implies the necessity of it is contained in a volume (3D). Therefore we propose that in 
the universe happens a similar thing: To better describe the curved hypersurface (3D) of space, we 
need use a hipervolum (4D), in addition to the temporal dimension independently. 

Another possible similarity between the universe and the ballon surface is that the universe is 
finite (in space and time) and has no privileged points, because its centre is not on the surface. If the 
universe has a finite age, as observations suggest, and given that the speed of expansion is finite, then 
it seems impossible that the universe be infinite. This rules out a priori that the universe be flat or 
completely open, because this necessarily implies infinitude, or borders, and therefore a privileged 
point (centroid). For all this, it seems that only a closed universe, and thus with positive curvature, 
makes sense relativistic. With these ideas, the simplest model of universe that we have formed is one 
that has a maximum spatial symmetry: the hypersphere. The cosmological model of balloon must 
satisfy the general relativity (Einstein 1916). In addition, it is also necessary to postulate some 
additional relations to explain the ‘gravitational constant’, G. 
 
 
2 Used assumptions  
 
2.1 Cosmological balloon model 
 
Firstly, we searched a cosmological model that satisfies the relativity, has a positive curvature, and is 
finite without borders (privileged points). With all this, our model is a universe with 4 dimensions 
contained in a 5-dimensional space, and with product defined by trace –3; i.e., four spatial dimensions 
(x, y, z, u), and a temporal (T). Therefore, it is a Lorentz or pseudo-Riemannian variety of signature (1, 
4), according to the formal notation (O'Neill, 1983). But, also it is known as 5D Minkowski space 
(Dvali et al., 2000). Henceforth, we write the vector of space-time as L = (T, x, y, z, u). 

The five proposed dimensions are macroscopic unlike that is proposed in theories of Kaluza-Klein 
(Overduin and Wesson, 1997; Wuensch, 2003). In addition, there must be a linkage so that reduce the 
configuration space by one topological dimension less (Salvatore and Longoni, 2005). Such condition 
is given by the following relationship: all the events in the universe Li = (Ti, xi, yi, zi, ui) have the same 
form with respect to a given origin of reference; i.e., there exists a coordinate origin O so that satisfies: 

  ioi LOL ∀=− 22 τ  (2.1) 

where τo is a constant. If we choose the zero origin O = (0, 0, 0, 0, 0), and we suppose time T is much 
greater than τo, then this link condition becomes in the equation of a light hipercon, with focus in the 
origin O, i.e., for large time the universe seen from the origin takes the form of a 4D hypersurface 
expanding in function of time T, according to: 

 2222222 uruzyxT +=+++≈ r
 (2.2) 

where we have defined the vector r as the vector of ordinary spatial coordinates (x, y, z). However, 
observers are not in the origin, where by definition the time does not pass; but they are part of that 
expanding universe (hypersurface). Therefore, to choose a new reference system, we need a fixed 
spatial point but observable, ro. In other words, the spatial point (ro) must belong to the universe today, 
and so must satisfy the Equation 2.2. If we choose zero value for ordinary space components, x, y and 
z, then necessarily we have that u = T, where T is the age of the universe in every moment of the 
observations. In other words, our spatial reference point is in the path L = (T, 0, 0, 0, T), but in the 
study of motion, we need fix the reference time in To, so finally the "point" of space-time reference is 
W ≡ (To, 0, 0, 0, T). 
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The reference system TXYZ is constructed with a hyperplane tangent space at the point of 
reference, and perpendicular to the direction of U. The "point" W belongs to this hyperplane and is a 
no-existent trajectory of space-time, it just satisfies the Equation 2.2 for the reference instant To 
(Figure 1). 
 

 
Figure 1. Graphical representation of the 5 dimensions of the universe (left) and 

projection of the universe on the hyperplane of 4 spatial dimensions (right). 
 

Around the universe next to W, the space is almost flat, but if we separate the point of reference, 
the region belonging to the hypersurface is decreasingly flat. Therefore we define an angle of 
separation γ that is given by the hypersphera obtained from the Equation 2.2 for each instant T. If we 
define the ordinary distance r as the module of the sub-spacial vector (x, y, z), then the sine of the 
angle of separation is the ratio between r and T: 
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where the time T is considered as the radius. That is, the previous condition of linkage has brought us 
now to say: 

 2

2

1
T

r
Tu −=  (2.4) 

In order to describe a motion in the reference system W, we can think that a Lorentz 
transformation is necessary (Møller, 1952). In particular, this coordinate transformation is made from 
the reference system of O to W, considering the relative velocity that, in r = 0, is duw/dT = 1 (and 
direction u). However, this is only true if the reference system W belongs to the universe (according to 
Equation 2.1 or 2.2), i.e., only for T = To – τo. Therefore, we must necessarily make a new hypothesis: 
Our perception of the universe is such that we believe there is a "point" W, where we theoretically are; 
so that any point s on the system W is written as the difference between the components of s and W. 
Put another way, everything happens as if we observe from the point O, but the difference between 
each point L and W: 

 ),,,,( TuzyxTTWLs o −−=−≡  (2.5) 

In other words, in according to our perception, the reference point is W. Using Equation 2.4 we 
can write Equation 2.5 as: 

 ( )( )2
211,,

T
rTrts −−−= r

 (2.6) 
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where we have defined t ≡ T – To. In addition, if the distance r is small compared to the time T, then 
we can approximate that: 
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Therefore, the four apparent dimensions are explicitly, as: 

 )2/,,( 2 Trrts −= r
 (2.8) 

and then locally (r << T ) the space becomes flat and we can reproduce the Minkowski metric. 
Moreover, since the universe is expanding, we see that for an object that does not change the angle on 
coordinate system, we have: 
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where kr is the vector direction of r and γ is the relative angle of the studied object with respect to W. 
It is advisable therefore to use a spatial variable independent from time, such as the angle. With this, 
we define comoving spatial coordinates, r’ , according to: 

 ro uTr r
r
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T
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r ='    (2.10) 

Then the Equation 6 can be rewrite as:  
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Moreover, as we have four apparent dimensions in five dimensions, general relativity can be used 
to reduce them to four spatial dimensions: If there are an observer who is dropped, then their own 
coordinates {ξα} can be transformed according to another reference system  W {xε} using the 
equivalence principle of Einstein (1916). The square of the module position vector before 
transformation is: 

 βα
αβ ξξη ddds =2  (2.12)   

where ηαβ is the 4-dimensional metric tensor with trace –2, whilst ds is the module of position vector 
(Einstein, 1916). If ds2 > 0 then the own time dτ is defined as dτ = ds. And therefore, the change of 
reference system {ξα} � W{ xε}is given by: 
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where the tensor gλµ(x) is defined as: 
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2.2 Energy of the Universe 
 
In our model, the universe has a minimum interval of time, or quantum of time which equals the 
constant τo (Eq. 2.1). Therefore, any spatial variable xα can be written as an integer number of τo 
according to xα = nα · τo, where nα is an integer. However we can assume that, initially, to 
macroscopic scales such description is almost equivalent to a spacetime continuum, so the differential 
calculations are still valid. 

To understand the discretization of time, we can make an analogy with the energy propagation of 
a wave Ψ(T) function of time T. In this case the medium where the wave propagates is the 5D space of 
the universe, and wave is the universe itself (set of possible events that satisfies the linkage condition 
L2 = τo). The energy (or matter) is propagated by the discrete points, such as those satisfy the condition 
of quantum ligament, according to: 
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 ( ) ( ) ( ) ( ) ( )24232221201 nnnnn −−−−=  (2.15) 

where nα is the integer associated with the spatial variable xα. However, due to the rotational 
symmetry SO(4) of points of reference system (Weinberg, 2000), points of space (and therefore matter 
points) can have "infinite" locations. Therefore we propose a treatment similar to the quantum field 
theory. 

Recall that, whether two magnitudes of a quantum system (Weinberg, 1995, 1996) are represented 
by observables Â and Ê, which are autoadjunts operators, and are operating on a state space which 
satisfies the Schwarz inequality, then the expected value of product Â·Ê is greater than the magnitude 
of its imaginary part (Robertson, 1929), namely: 

 [ ]
2

2 ˆ,ˆ
2

1ˆˆ ψψψψ EA
i

EA ≥  (2.16) 

where ‹ψ|X|ψ〉 is the expected value of X in state space |ψ〉, whilst [Â , Ê] ≡ ÂÊ - ÂÊ is the 
commutator, which also equals [Â , Ê] = [Â - ‹ψ|Â|ψ 〉,  Ê - ‹ψ Ê|ψ 〉], and ‹ψ|X|ψ〉  is the expected 
value of X in state space |ψ〉. Therefore, the standard deviation of the Â and Ê that satisfy: 

 [ ]ψψ EAiEA ˆ,ˆˆ·ˆ 2
1−≥∆∆  (2.17) 

For example, if we define the momentum-energy operator as p̃ α ≡ i∂ α acting on any state 
|ψ 〉, then easy to show that:  

 2
1ˆˆ ≥∆∆ αα xp  (2.18) 

If we do not any measure, then we take the minimum deviations: 

 2
1ˆˆ =∆∆ αα xp   →   2

100 ˆˆ =∆∆ xp  (2.19) 

If we now apply the operators on a hypothetical state of the universe Ψ(T) at the minimum 
interval of time, then the minimum amplitude of momentum-energy at that time interval is: 
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By definition, this is the total mass-energy of the universe (MU), which spreads from the moment 
τo. In units of the International System, we have: 
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In general, the maximum deviation of a spatial component is ∆x0
max = ∆n0τo = T = n0τo. Therefore, 

the minimum deviation associated with this, ∆p0
min, is:  
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where m̃o is the minimum measurable energy in the universe, and therefore the quantum of spacetime-
energy. 
 
 
2.3 Density of the Universe 
 
Under the proposed model, the volume (3D) of the universe is 2π2To

3, therefore the average energy 
density of the universe is: 

 3
o

U
o

T

M

Ω
≡ρ  ...  (2.23)  

where Ω  ≡ 2π2, and MU is the total mass of the universe. Assuming that the density is distributed 
uniformly in the universe, then we can define a mass Mγ closed in a volume of radius equal to the arc 
D = γ /To, as: 
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 3)( DDM o γγ ωρ≡    (2.24) 

where ωγ  ≡ 2π(γ – sin γ · cos γ )·γ -3 is the volumetric angle associated with the angle γ, with respect to 
a given reference system (see Appendix A) 

Moreover, the linear density µ of energy in the universe, MU, is defined as the ratio between 
energy and age of the universe To, namely: 
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With this we can rewrite Equation 2.23 as: 

 2
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2.4 Approach of heterogeneous universe 
 

Assuming for a particular reason, in a moment To, a number of points nM of energy m̃o manage to 
form an accumulation of energy M = nMτo, then we can define a time built by the total length of all 
points, i.e., TM = nMτo. Thus, the linear density is the same as in the universe in To, i.e. µ. In fact, using 
Equation 2.25 and 2.22, we see that: 
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Then the time TM represents the radius of curvature of a hypothetical micro-universe with the 
same linear density µ than the universe, and with a mass-energy M is distributed uniformly in the 
space of this micro-universe, i.e., with constant density ρM, and greater than the universal density, ρo. 
However the density of the accumulation is not always constant in space. 

Whether the accumulation is confined or not in a sphere of radius R, for any spatial arc D we can 
define an average density of that accumulation ρD, which in general is no constant (different of ρM). 
Therefore, such density is given by the ratio between the energy, m(D) ≤ M, closed by the symmetric 
volume of the arc D, and this volume, that is: 
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Recall that a relationship exists between the curvature of the universe, To, and the average density, 
ρo, which is given by Equation 2.26, and therefore: 
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Therefore, we the make assumption that, in order to study the behavior of the accumulation of 
points, we can have a radius of curvature Tr associated with the average density ρD (D), so that in the 
limit when ρD(D) → ρo   we recover Tr → To, therefore necessarily we define: 

 
D

rT
ρ
µ

Ω
≡  (2.30) 

We see that, if the average density of the accumulation ρD is constant with distance (ρD(D) = ρM), 
then we obtain that Tr curvature is also constant and equal to TM. In order to show this, we applied that 
the density (constant) of the accumulation satisfies the Equation 2.23, with energy M of the micro-
universe and hence we find that: 
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3 Results 
 
3.1 Obtaining the differential of space-time 
 
From Equation 2.11, we can calculate the line element of the universe with respect to our reference 
frame of W; and therefore, this is equivalent to the differential line with respect to any rest point 
(expanding). According to Equation 2.11, the line ds can be written as: 
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where r’ are the comoving coordinates in space XYZ (Eq. 2.10). And therefore, the square of the 
differential is: 
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operating the square of the fifth term on the right of equality: 
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and finally, by grouping terms: 
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For the movements in that do not changes the angle, dΩ = 0, then we can write that: 
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This is the square of the differential line for small regions of the universe. Then we see that the 
elements of the tensor g, given by Equation 2.13 and 2.14 are: 
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Moreover, if the distance is much smaller than the time (Eq. 2.7) then, according to the Taylor 
development, we can approximate to: 
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Taking the Equations 3.6, the spatial differential dl is (Wald, 1984): 
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and again, using development of Taylor: 
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These are the equations of an inflationary universe with a constant increasing is a function of time 
of the universe, T. Also it is observed that the universe has positive curvature according to Robertson-
Walker metric (Wald, 1984), and locally it is flat (k  ≈  2/To

2  ≈ 0). 
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3.2 Obtaining of varying G 
 

With the approach of the metric tensor of the Equation 3.7 and the change of variables between 
the distance r’  and the arc D, we can write that:  
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Given the definitions for the Equations 2.23 and 2.24, we obtained: 
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Finally, with the definition of linear density (Eq. 2.25), we can write:  
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where r’  is the module of the ordinary spatial vector (x’, y’, z’), comoving with universe. Recall that 
the metric element goo provides information on the effectiveness of the module of time T, when it is an 
inner product (Wald, 1984), then we can understand as a kind of "density of time" in a certain region 
of space. Thus, we see that the linear density µγ behaves as an normalizing factor of this "density of 
time". 

From Equation 3.13 shows that as observed with a larger arc D, the element goo increases with the 
square of D, although the energy closed by D increases with the cube. 

Moreover, if we consider the approximation of heterogeneous universe we can see that generally 
the self curvature of the accumulation will follow the same mathematical development that the whole 
universe (from 3.1 to 3.7). Therefore, considering the Equations 2.30 and 2.28, we obtain that:  
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where r’  is the radial position comoving with respect to the accumulation center. Consequently, there 
is a difference from Equation 3.13, and it is that now, the element goo refers to the time density of the 
accumulation in particular and not of the universe in general. And since the density ρr is greater than 
ρo, then so is the associated curvature (the radius Tr is less than To).  

From now onwards, for convenience we define the gravitational varying Gγ = Gγ(γ, µ) as: 
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where Ω = 2π2,  ωγ  = 2π(γ – sin γ · cos γ )·γ -3 and γ is the angle in the component u of a point on the 
accumulation center. Thus, the Equation 3.14 is as: 
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where we measure locally (for γ = 0), Gγ is the "Newton's gravitational constant" (Weinberg, 1972; 
Wald, 1984), which specifically applies as (from Eq. 3.15): 
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Thus, the gravitational varying Gγ  can be written according to a funtion of Gο, as: 
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In Equation 3.17 we observe that the 'gravitational constant' Go depends on the linear density of 
energy, µo, and this is not a constant but decreases with time, or put another way, Go increases. 
Knowing that the age of the universe is To = (1.373 ± 0.012)·1010 anys (Hinshaw et al., 2009), we can 
estimate the relative change of Go, which is given by: 
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Moreover, for comoving distances r’ of the same order that Tr, the approximation 3.14 is not valid, 
but it must use the equation 3.6. Therefore, the element goo the metric tensor is: 
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4 Discussion 

4.1 Expansion of the universe 

In cosmology, Hubble's law relates the velocity of an object comoving with universe and its distance 
from an observer using a slope called Hubble parameter, Ho (Liddle, 2003). The model proposed in 
this paper describes a universe that has a linear expansion with time (Equation 2.2). 

In fact, from the Equation 2.9 and later it is inferred that the expansion is proportional to the 
inverse of the age of the universe. Therefore, in this case we have obtained that the Hubble parameter 
is Ho = 1/To. Knowing that the age of the universe is To  = (1.373 ± 0.012)·1010 years (Hinshaw et al. 
2009) then it follows that the Hubble parameter is 71.3 ± 0.6 km·s-1·Mpc-1 which is consistent with 
observations recently measured values around 71 ± 4 km·s-1·Mpc-1 (Spergel et al., 2003; Tegmark et 
al., 2004) and 70 ± 3 km·s-1·Mpc-1 (Spergel et al., 2007). 

These results imply that the expansion rate is equal to the light velocity (or very close), as opposed 
to proposing other authors, who speak of an accelerated expansion (Riess et al. 1998; Tegmark et al., 
2004; Szabó et al. 2007; Kowalski et al., 2008, Komatsu et al., 2009). However, these works using 
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'luminous distances' sometimes are over the age of the universe, which is impossible to suppose that 
the speed of light has been constant since the information can not travel more beyond the speed of 
light (Wald, 1984, and Appendix B). It is possible that the calculation of distances has been made 
taking into account a possible variation of the 'gravitational constant' (Gaztañaga et al., 2001). 

Moreover, our proposed model describes a positive curvature (equation 3.10) which is locally 
aproximable to zero, ie, the universe is locally plane, which is compatible with observations (Spergel 
et al., 2007). Specifically, we found that it locally is: 

 220
2 10·07.1

2 −−≈≈ year
T

k
o

 (4.1) 

where k is the local curvature and To is the age of the universe. 
In oter hand, according to observations of the cosmic infrared background dipole (Smoot, 1992), 

there appears to be an absolute reference frame at rest (Cahill and Kitto, 2003; Múnera, 2009). 
Therefore, we can say that the Earth is moving at about 370 ± 20 km/s with respect to the background 
radiation. That is, we can build a reference system with rest axes (according to background radiation). 
This 4D coordinate system is perfectly compatible with our cosmological balloon model. The 
background radiation in some ways represents the surface of the expanding balloon; and the balloon’s 
radial direction (time) represents the direction of the trajectories of the points with rest. Thus, our 
galaxy is moving with a "tangential component" with respect to these trajectories with rest. 
 
 
4.2 Density and mass of universe 
 
The 'gravitational constant', Go, was first introduced by Newton in 1687, and today it is known 
empirically that the value is approximately 6.674·10-11 (Mohr et al. 2005; Fixler et al. 2007). This 
value allows us to estimate the total energy of the universe and the average density, according to 
Equations 2.26, 3.17 and 2.23, with Ω = 2π2: 
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Given the natural transformation of coordinates (c = 1 = ħ) in the international system, and taking 
the empirical value of the age of the universe as 13.7·109 years, we get that: 
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Furthermore, from Equation 4.2 we obtain that the density of the universe is: 
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This corresponds to the average density in the literature called critical density, ρc = 9.4 ± 0,8 · 10-7 
kg·m-3 (Tegmark, 2004; Spergel, 2007), in fact, observed value of the average density of the universe 
(relative to the critical density) is 1.0050 ± 0.0060 (Hinshaw et al., 2009), and so there is good 
agreement between theory and observations. 
 
 
4.3 Variation of the 'gravitational constant' 
 
In this work we have seen that we expect a relative change of Go, about 7.3·10–11. Then, this value is 
consistent with experimental observations: it was measured as the relative variation of G is probably 
between 10-10  and 10-10  year-1 (Table 1), but sign depends mainly on whether it is measured in a fixed 
area (e.g. in the solar system) or when measured for different distances of the universe (such as pulsars, 
white dwarfs, etc.). In the first case, the relative variation of G is positive (Reasenberg and Shapiro 
1978, Williams et al. 1996; Biskupek and Müller, 2007), and in the second case seems to be mainly 
negative (Kasper et al. 1994; García-Berro, 1995; Bisnovatyi-Kogan, 2006), but these latest measures 
are generally less accurate. 
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Taula 1. Relative variation of G, measured locally (solar system) and cosmologically. Top shows the 
studies that measure an increase and bottom shows the measuring an decrease. 

 

G-1dG/dt  (year-1) Authors Methodology 
(2 ± 7) · 10-12 Müller and Biskupek (2007) Lunar laser ranging 
≤ 1.6 · 10-12 Guenther et al. (1998) Helioseismology 
~ 8 · 10-12   Williams et al. (1996)   Lunar laser ranging 

~ 10-11    Krauss and White (1992) Gravitational Lensing 
~ 10-11    Sisterna and Vucetich (1991, 1994) Palaeontological evidences 

(0 ± 2)  · 10-12   Anderson et al. (1991) Planetary radar ranging 
(0.2 ± 0.4) · 10-11 Hellings et al. (1989)   Planetary radar ranging 
(1.6 ± 0.6) · 10-11 Van Flandern (1981)* Lunar laser ranging 

(2 ± 4) · 10-12 Hellings et al. (1983) Solar evolution 
~ 1.5  · 10-10 Anderson et al. (1978) Planetary radar ranging 

(6.2 ± 3.3) · 10-10   Reasenberg and Shapiro (1978) Planetary radar ranging 
~ 3 · 10-11   Williams et al. (1978) Lunar laser ranging 
≤  1 · 10-10   Chin and Stothers (1976) Solar evolution 

(5 ± 1)  10-11 Dearborn and Schramm (1974) Stability of galaxy clusters 
~ 4 · 10-11   Morrison (1973) Lunar evolution by using elipses 
~ 4 · 10-10   Shapiro et al. (1971)   Planetary radar ranging 

(–0.6 ± 2)·10-12 Bisnovatyi-Kogan (2006) Pulsar system 
≥ – 4,1 · 10-10 Biesiada and Malec (2004) Pulsar system 
≥ – 1 · 10-11   Gaztañaga et al. (2001) Luminosity  of Supernova Ia 

–(1.4 ± 2.1)·10-11   Degl’Innocenti et al. (1996) Globular clusters 
–(0.6 ± 4.2)·10-12   Thorsett (1996) Mass of neutron stars 
– (1 ± 1) · 10-11 García-Berro (1995) white dwarfs, (C/O) stratified 
– (3 ± 3) · 10-11 García-Berro (1995) white dwarfs, non-stratified 
– (9 + 18) · 10-12 Kaspi et al. (1994) Pulsar system 
– (1.1±1.1) ·10-11 Damour i Gundlach, (1991) Pulsar system 
≥ – 1 · 10-12   Wang (1991) Solar luminosity 
≥ – 8 · 10-12   McElhinny et al. (1978) Planets and Dirac creation 

 
The string theory is compatible with negative values, specifically G-1dG/dt = –1·10–11 ± 1 year-1  

(Wu and Wang, 1986), which involve a creation energy (Dirac, 1936 1975). This is that some authors 
assume as McElhinny et al. (1978) and Van Flandern (1981) to explain the planetary acceleration, 
avoiding taking the change as positive G-1dG/dt. 

In fact, most works which describe a negative variation of G-1dG/dt assumed this a priori (based 
on Dirac, 1938) and therefore in some cases are looking for an "upper limit" for negative variation, 
leaving aside the possibility that the value be positive. Also, keep in mind that measures taken for each 
time a larger cosmological scale, the parameter Gγ is becoming smaller (equation 3.18), which can 
make it appear a relative decrease of Gγ. 

According to Table 1, the best estimates of the relative variation of G are:  (6.2 ± 3.3) · 10–10  year 
-1 (Reasenberg and Shapiro, 1978), (5 ± 1) · 10–11 year -1 (Dearborn and Schramm, 1974), and (1.6 ± 
0,.6) · 10–11 year-1 (Van Flandern, 1981) in the case (*) to suppose that there is no creation of Dirac. 
That is, it seems more likely that the relative variation of G to be positive than negative. 

For all these reasons, for to make the average observed values, the negative measures were 
discarded. Thus, we obtain the average observed a 95% confidence interval is G-1dG/dt = (6 ± 5)·10–11 

year-1. This value shows that the model is consistent with observations. 
 
 
4.4 Minimum time and energy 
 
Also, remember that for the initial hypothesis, there is a minimum interval of time which is related to 
the mass of the universe using a quantum way, according to Equation 2.21, as: 
 2

1=oUM τ  (4.5) 
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Moreover, given the Equation 3.17, and making the conversion from natural units (ħ = 1 = c)  to 
the International System of Units (SI), we obtain that: 
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τ h
 (4.6) 

where the error interval is 10%. In addition, according to the Equation 2.22 we obtain the minimum 
energy of the universe m̃o, i.e.: 
 2

1~ =ooTm  (4.7) 

making the conversion from to the International System of Units, we obtain: 
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Therefore, this is the minimum measurable mass and therefore can be considered the rest mass of 
the space-time, or photon. We can see that this value is far greater than the limit observed for the 
photon, which is <10−52 kg (Eidelman et al., 2004). 
 

 
4.5 The metric singularity 

 
In the Equation 3.20, we see certain the element goo can be zero by certain conditions. If the total 

energy M is closed within a radius R ≤ D sufficiently small, then the energy at the distance D also be 
m(D) = M,  and the element goo becomes zero at a certain distance Do, that is no the radius of 
Schwarzschild (1916 and 1916b) which is rM ≡ 2Go M, but this with a factor of 4/3: 

 Mo
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M rD
D

r
g
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4

4

1
1000 =→=−↔=  (4.9) 

Note that the element goo presents possibles values for an interval of distances between 4rM/3 and 
rM, where this values have a negative sign (density of negative time). The interpretation of this result 
can give rise to various speculations about travel back in time, but we must consider that the 
Schwarzschild radius  is a physical barrier very difficult to overcome (because the density of time is 
zero; see Eq. 3.13). 
 
 
5 Conclussions 
 
The universe can be described with 5 dimensions and a condition of linkage which involves an 
additional connection between space and time. Everything happens as if our observations set 
artificially an reference instant, and therefore it would be a point that does not exist in the universe. 
All this implies that the expansion and over time are similar phenomena, since the expansion rate is 
the same as the speed of time, light velocity (c ≡ 1). Therefore, the Hubble parameter equals the 
inverse of the age of the universe, Ho = 1/To = 71.3 ± 0.6 km·s-1·Mpc-1,, which is consistent with more 
recent observations. 

With the additional hypothesis of the existence of a minimum time interval (time quantum, equal 
to 1.4·10-105s), we have estimated a theoretical value for energy in the universe MU = 4.10 · 1053 kg 
which determines an average value of energy density ρo = ρc = 9.60·10–27 kg·m-3, consistent with the 
observed relative value (1.005 ± 0006 times the critical density, ρc). 

In addition, this model explains that the "gravitational constant" G is given by the inverse of the 
linear density of energy of the universe, and therefore, predicts that is dependent on the age of the 
universe. Specifically, the relative variation of G is approximately the inverse of the present age. The 
predicted value of the relative variation (G-1dG/dt = 7.3 · 10–11 any-1) supports the observations (G-

1dG/dt = (6 ± 5) · 10–11 any-1). 
Moreover, from the relationship between G and the energy density of the universe follows a lower 

limit of the measurement of the mass-energy, so we can think it is related to an underlying rest mass 
of the photon. That limit depends on the age of the universe, and the present is estimated to be (1.36 ± 
0,01) · 10–67 kg. 
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Finally it is noteworthy that the curvature of the universe and the curvature of gravitation can be 
described by the same geometry of hiperesferes, in according to the simple model proposed. The 
gravity can be understood as a local deformation of the curvature of the universe in relation to the 
extra spatial dimension, but in any case at cosmological curvature of the universe depends only on age, 
and no of gravitation, but rather the contrary: the ‘gravitational constant’, G, depends on the curvature 
of universe. 
 
Open Access  This article is distributed under the terms of the Creative Commons Attribution 
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any 
medium, provided the original author(s) and source are credited. 
 
 
Appendices 
 
A  Volumetric solid angle 

 
Taking hyperspherical coordinates, we can calculate the volume (V) corresponding to the universe 
(hypersurface). Therefore, we can change coordinates as: 
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 (A.1) 

where T is the age of the universe, like hyperspherical radius, whilst α, β and γ are the angles of a 
point of the hiperesfera. With the system of equations A.1, we identify the ordinary space is r ≡ √(x2 + 
y2 + z2 ) = T·sin γ, while the spacial arc D at the universe is D ≡ T·γ. In according to an appropriate 
coordinate transformation, associated with the system of equations A.1, the differential volume, dV, is 
as: 

 βαγαγ dddTdV ····sin·sin  23=  (A.2) 

where the domain of the triple integral goes from 0 to 2π for β, from π to 0 for α and for 0 to π for γ. 
With this we can calculate the volume V(γ) closed angle γ  as: 
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Furthermore, we define the local volumetric solid angle, ωγ, according to the relationship between the 
volume and the cube of the distance arc D, as: 

 3
3
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V
 (A.5) 

With such a definition, it is easy to see that its limit satisfies:  

 o
0 3

4
lim ωπωγγ
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 (A.6) 

 
B Time dilation and maximum velocity 
 
 
According to Equation 2.6, the vector of position s expressed in function of time t and ordinary 
position r is: 
 ( )surts ,,

r=  (B.1) 

where us is the component u of the vector s, which is: 

 ( )2
211
T

r
s Tu −−−=  (B.2) 

where T is the age of the universe. Therefore, the differential of the position is: 
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 ( )dtudtvdtds s&
r

,,=  (B.3) 

where ůs is the derivative with respect to the time of component u of the vector of position s.  
According to the Equation B.2, it is a function of the ordinary position r, the age of the universe T, and 
the ordinary velocity, v: 
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One approach of ůs is: 
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Using the Equation B.1 we can define the differential of proper time dt’ as that interval of time 
measured in a system where the ordinary velocity v and the position r are zero, ie: 
 ( )0,0,'' dtds =  (B.6) 
where ds’ is the differential of position, measured from this reference system. Obviously, the length 
ds’2 must be equal to ds2, therefore proper time dt’ is related to the time dt as: 

 ( ) ( )222222 11' wdtuvdtdt s −=−−= &  (B.7) 

where w is the total space velocity, ie, w2 = v2 + ůs
2. From Equation B.7 and rewriting the relationship 

beetwen dt and dt’, we obtain: 
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Therefore, an observer measure a real time dt if and only if w ≤ 1, so the limit velocity of the 
information is w = 1, as in Einstein's special relativity. Thus, the expansion of the observable universe 
has a maximum angle, where the velocity is 1. In order to find the angle using the Equation B.3, we 
can use r/T = sin γ and the object is comoving with respect to universe, then the velocity of change of 
γ is zero, then:  

 ( ) ( ) ( )γγ cos1cos111 2
2 −−=→−−=−−−= sT

r
s uTTu &  (B.9) 

 ( )
4

cos121 2222 πγγ =→−=+== suvw &  (B.10) 

were we use the Equation 2.9, i.e. v = r/T. 
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