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Abstract

Recently, possible variations of 'gravitational stamt' G have been measured, which can be
explained by the expansion of the universe. Usuadlymological models are built with "dark
energy” in order to explain why the expansion oé thniverse is not slowing by the
gravitational action. In this paper we propose ltaraative model to explain the variation®f
with the expansion of the universe, without thechepostulate the existence of dark energy.
The model is based on a relativistic adaptatiomoélel of ‘cosmological balloon’. The model
provides an explanation for the ‘gravitational dan$ and its variation. In fact, the predicted
value of the relative variationG{(*dG/dt = 7.3 - 10" yr'") is consistent with most precise
observations. Another result of this work is théaiting of a value for the Hubble parameter
equal to 71.3 + 0.6 km*sMpc?, which is consistent with the currently observetire (71 + 4
km-s'-Mpch). In addition, the model gives theoretical values the universe energy
(4.10 - 16%kg), as well as other cosmological quantities, sustihe minimum measurable
mass ((1.36 + 0.01) - TOkg) and the minimum time interval (1.4-1%seq.
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1 Introduction

The observation of all physical quantities, inchglitime and energy, seem to be affected by a
guantum phenomenon of delocalization (Weinberg5),980 it seems that the cosmological equations
must also be submitted to process quantitationli@C2001; Rovelli, 2004). But first, it is necesgao
better understand the expansion of the universdtandrigin and evolution of the coupling constant
of gravitation,G.

Dirac (1938) was probably the first to suggestghssibility thatG might vary depending on the
age of the universe, specifically proposed t@ats a function of inverse time. This theory was
developed decades later by Bran and Dicke (196a&ntr@ry to this, other authors propose t@at
increases with age of the universe (Helling etla8B3; Abdel-Rahman, 1990; Massa, 1997; Arbad,
2003). At present, many authors conclude that nmewsis a variation of5, but there is no consensus
on the sign nor the magnitude (Salam and Wigner2 1Muller et al. 1991; Demarquet al. 1994;
Garcia-Berro et al. 1995; Thorsett, 1996; Benvertit, 1999; Oliveet al, 2002).

Moreover, at present there is a significant advam¢lee measure of cosmological parameters, and
it has obtained results confused for the densityhef universe and the expansion. Specifically, a
density equal to the critical is found, but witlexgpansion that is not slowing down (Tegmark et al.
2004; Spergel et al. 2007; Hinshaw et al., 2009).€kplain the results, it has been necessary to
introduce the concept of dark energy, so that noevexpansion is guaranteed by the acceleration
caused by such energy, thus compensating to thi@&ajranal attraction of the critical density.

In modern cosmology, four macroscopic dimensionsoimmonly used, as well as the proposals
on the microscopic scale of Kaluza-Klein theory atrthg theory (Green et al. 1987; Wuensch, 2003).
These macroscopic dimensions can be curved byffibet ef energy (Einstein, 1916; O'Neill, 1983),
so usually it can build models of expansion ofuheserse by considering the mass-energy that exists
But today, the postulate of the existence of "damlergy" (not observable) has been necessary to
explain the fact that the expansion of the univess®et slowing for the gravitational action.



In this paper we propose an alternative model faix the relationship between the variation of
G and the expansion of the universe, without thedriegpostulate the existence of dark energy. The
model is based on a relativistic adaptation ofcib@mological ballon model (Eddington, 1933).

The cosmological model of the balloon was usedxjgagn Hubble's law (1937), that is made
popular by Eddington (1933) and Hoyle (1960), whplained that, where galaxies drawn on the
surface of a balloon that is inflated, these apassged from each other in a way similar to how the
universe expand. Therefore, we can make the andaluatythe surface of the globe (2D) is the
hypersurface (3D) of the universe, so that theusadif the expansion is function of time. The act of
inflating the balloon itself is a temporal dimensidut the fact that the balloon should be a curved
surface (2D) implies the necessity of it is congdinn a volume (3D). Therefore we propose that in
the universe happens a similar thing: To bettecriles the curved hypersurface (3D) of space, we
need use a hipervolum (4D), in addition to the terapdimension independently.

Another possible similarity between the universe #me ballon surface is that the universe is
finite (in space and time) and has no privilegeth{so because its centre is not on the surfadhelf
universe has a finite age, as observations suggestgiven that the speed of expansion is finitent
it seems impossible that the universe be infirfit@s rules outa priori that the universe be flat or
completely open, because this necessarily imphésitude, or borders, and therefore a privileged
point (centroid). For all this, it seems that oalyclosed universe, and thus with positive curvature
makes sense relativistic. With these ideas, th@lssh model of universe that we have formed is one
that has a maximum spatial symmetry: the hypergphBEne cosmological model of balloon must
satisfy the general relativity (Einstein 1916). addition, it is also necessary to postulate some
additional relations to explain the ‘gravitatiomainstant’,G.

2 Used assumptions
2.1 Cosmological balloon model

Firstly, we searched a cosmological model thaskas the relativity, has a positive curvature, &nd
finite without borders (privileged points). Withl ahis, our model is a universe with 4 dimensions
contained in a 5-dimensional space, and with prodefined by trace —3; i.e., four spatial dimension
(x, ¥, z u), and a temporall{j. Therefore, it is a Lorentz or pseudo-Riemanwarety of signature (1,
4), according to the formal notation (O'Neill, 198But, also it is known as 5D Minkowski space
(Dvali et al,, 2000). Henceforth, we write the vector of spdoetasL = (T, X, Yy, z, U

The five proposed dimensions are macroscopic uttiieis proposed in theories of Kaluza-Klein
(Overduin and Wesson, 1997; Wuensch, 2003). Intiaddithere must be a linkage so that reduce the
configuration space by one topological dimensi@s lSalvatore and Longoni, 2005). Such condition
is given by the following relationship: all the ewe in the universk; = (T;, %, Vi, Z, u) have the same
form with respect to a given origin of reference;,ithere exists a coordinate orighso that satisfies:

L -of =7, O (2.1)

[0]

wherer, is a constant. If we choose the zero ori@ir (0, 0, 0, 0, 0), and we suppose timis much
greater tharr,, then this link condition becomes in the equatdm light hipercon, with focus in the
origin O, i.e., for large time the universe seen from thgio takes the form of a 4D hypersurface
expanding in function of time&, according to:

T?=xX+y’+Z2+U =2 +U° (2.2)
where we have defined the vectoas the vector of ordinary spatial coordinatesy(z). However,
observers are not in the origin, where by definitibe time does not pass; but they are part of that
expanding universe (hypersurface). Therefore, wosh a new reference system, we need a fixed
spatial point but observable, In other words, the spatial poimg)(must belong to the universe today,
and so must satisfy the Equation 2.2. If we chaase value for ordinary space componerty,and
Z, then necessarily we have that T, whereT is the age of the universe in every moment of the
observations. In other words, our spatial refergpaet is in the patth. = (T, 0, 0, 0,T), but in the

study of motion, we need fix the reference tim@Jnso finally the "point" of space-time reference is
W= (T, 0, 0, O,T).
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The reference system TXYZ is constructed with aengfane tangent space at the point of
reference, and perpendicular to the directiodoThe "point" W belongs to this hyperplane and is a
no-existent trajectory of space-time, it just dedss the Equation 2.2 for the reference instént
(Figure 1).

U
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Figure 1. Graphical representation of the 5 dimensionsiefuniverse (left) and
projection of the universe on the hyperplane gbatisl dimensions (right).

Around the universe next Wy, the space is almost flat, but if we separatepttiat of reference,
the region belonging to the hypersurface is dearghs flat. Therefore we define an angle of
separatiornythat is given by the hypersphera obtained fromB@eation 2.2 for each instaht If we
define the ordinary distanaeas the module of the sub-spacial vector (x, ytt®n the sine of the
angle of separation is the ratio betweemdT:

: r
siny=—
T?2=f2+0®> [@- B (2.3)
cosy =—
1

where the timé is considered as the radius. That is, the prewouslition of linkage has brought us
now to say:

r.2

u=T 1_F (2.4)

In order to describe a motion in the reference esysW, we can think that a Lorentz
transformation is necessary (Mgller, 1952). Inipafar, this coordinate transformation is made from
the reference system & to W, considering the relative velocity that, inc 0, isdu,/dT = 1 (and
directionu). However, this is only true if the reference sysW belongs to the universe (according to
Equation 2.1 or 2.2), i.e., only fdr= T,— 1. Therefore, we must necessarily make a new hypisthe
Our perception of the universe is such that weelelthere is a "pointV, where we theoretically are;
so that any poins on the systerWV is written as the difference between the companefns andW.
Put another way, everything happens as if we obsEom the poin©O, but the difference between
each point. andw:

SEL-W = (T-T,, X, ¥, z, u-T) (2.5)

In other words, in according to our perception, tteierence point i8V. Using Equation 2.4 we

can write Equation 2.5 as:
s= (t, r, —T(1—,/1—r7T2)) (2.6)



where we have defindd=e T — T,. In addition, if the distanceis small compared to the tinTe then

we can approximate that:
r2 re
T 11— |=——= Sii r<<T (2.7)
T 2T

Therefore, the four apparent dimensions are exlglias:
s=(, 7, —-r*/2T) (2.8)
and then locally r(<< T) the space becomes flat and we can reproduce thkolski metric.
Moreover, since the universe is expanding, we Isaefor an object that does not change the angle on
coordinate system, we have:

sinyk. = (2.9)

— 0=—-—dt —>d—r=L
d T

r

T T T?

wherek; is the vector direction af and yis the relative angle of the studied object wabhpect taN.

It is advisable therefore to use a spatial variaidiependent from time, such as the angle. Wit thi

we define comoving spatial coordinates,according to:
r=T sinyd. — =T,

(o]

(2.10)

—| =

Then the Equation 6 can be rewrite as:
l2
r

T
s=|t, —r', -T|1- |[1-— 2.11
T ( TZJ (211)

(o] [o]

Moreover, as we have four apparent dimensionsrendimensions, general relativity can be used
to reduce them to four spatial dimensions: If there an observer who is dropped, then their own

coordinates §} can be transformed according to another referesystem W £} using the
equivalence principle of Einstein (1916). The seuaf the module position vector before
transformation is:

ds’ =n,,dé"dé” (2.12)
wherer,z is the 4-dimensional metric tensor with trace wilst ds is the module of position vector
(Einstein, 1916). I’ > 0 then the own timdris defined aslr = ds And therefore, the change of
reference system&} > W x%}is given by:
dé? dé*
dx* dx”
where the tensor,gx) is defined as:

ds’ =7, dx'dx* = g,, (xdx" dx* (2.13)

__dé" dé”f
A A

g (2.14)

2.2 Energy of the Universe

In our model, the universe has a minimum interatime, or quantum of time which equals the
constantr, (Eg. 2.1). Therefore, any spatial variakfecan be written as an integer numberrof
according tox” = n? - 1, wheren? is an integer. However we can assume that, ilyitidb
macroscopic scales such description is almost afgrivto a spacetime continuum, so the differential
calculations are still valid.

To understand the discretization of time, we cakaran analogy with the energy propagation of
a wave¥(T) function of timeT. In this case the medium where the wave propagates 5D space of
the universe, and wave is the universe itself g@ossible events that satisfies the linkage dmrdi
L? = 7). The energy (or matter) is propagated by therdisgoints, such as those satisfy the condition
of quantum ligament, according to:

4



1= (of - (0 f - () - - (o 215)

where n? is the integer associated with the spatial vagiail However, due to the rotational
symmetrySO(4)of points of reference system (Weinberg, 2000nts®f space (and therefore matter
points) can have "infinite" locations. Therefore pr@pose a treatment similar to the quantum field
theory.

Recall that, whether two magnitudes of a quantustesy (Weinberg, 1995, 1996) are represented
by observabled andE, which are autoadjunts operators, and are opegratina state space which
satisfies the Schwarz inequality, then the expeetdde of produch-E is greater than the magnitude
of its imaginary part (Robertson, 1929), namely:

2

(w| A )| = (2.16)

S w[AEl)

where ¢fX|¢) is the expected value of in state spacey}, whilst [A , E] = AE - AE is the
commutator, which also equal& [ E] = [A - <«A|y), E - <« E|y)], and ¢4X|¢) is the expected
value ofX in state spaces}. Therefore, the standard deviation of giandE that satisfy:

AAAE > —%i((//ﬂA, é]w> (2.17)

For example, if we define the momentum-energy dperasp? = i0“ acting on any state
|¢), then easy to show that:

Ap? AX” 2% (2.18)
If we do not any measure, then we take the minirdemations:
APTART =1 o APAX® =1 (2.19)

If we now apply the operators on a hypotheticatestaf the universe{T) at the minimum
interval of time, then the minimum amplitude of memtum-energy at that time interval is:

1 1
20 min 21,

By definition, this is the total mass-energy of tiréverse ), which spreads from the moment
I,. In units of the International System, we have:

AﬁO(AXOmin) = (2.20)

~ fi
MU = ApO(AXOmin) = (2.21)
21,
In general, the maximum deviation of a spatial congmt isSAXax = AN°7, = T =n°7r,. Therefore,
the minimum deviation associated with tmﬁomin, is:

1 1 M,
0

20¢°  2rn®  n
wheremy, is the minimum measurable energy in the univeasd,therefore the quantum of spacetime-
energy.

AP° (DX max) = =m,(n°) (2.22)

2.3 Density of the Universe

Under the proposed model, the volume (3D) of thivarse is 2¢T.°, therefore the average energy
density of the universe is:

I\/IU
QT,’
whereQ = 217, andMy, is the total mass of the universe. Assuming thatdensity is distributed

uniformly in the universe, then we can define asmgclosed in a volume of radius equal to the arc
D = y/T,, as:

Py = (2.23)
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M, (D) = p,w,D° (2.24)

wherew, = 27{y— siny - cosy)-y ¥ is the volumetric angle associated with the apgleith respect to
a given reference system (see Appendix A)

Moreover, the linear densityof energy in the universédyly, is defined as the ratio between
energy and age of the univerkg namely:

(2.25)

~ 3

—MU_
HET

With this we can rewrite Equation 2.23 as:

7
QT?

(0]

0, = (2.26)

2.4 Approach of heterogeneous universe

Assuming for a particular reason, in a momgpta number of pointsy, of energym, manage to
form an accumulation of energy Mng 7, then we can define a time built by the total tbngf all
points, i.e.,Ty = hyT,. Thus, the linear density is the same as in tlxsetse inT,, i.e. & In fact, using
Equation 2.25 and 2.22, we see that:

MU = nor—ﬁo = nMr’ﬁo :M (227)
T nr, N, Ty

o]

Then the timeTy represents the radius of curvature of a hypothlketiucro-universe with the
same linear densitythan the universe, and with a mass-endvbys distributed uniformly in the
space of this micro-universe, i.e., with constaamdity o, and greater than the universal dengity,
However the density of the accumulation is not gsveonstant in space.

Whether the accumulation is confined or not in laesp of radiuR, for any spatial ar® we can
define an average density of that accumulagenwhich in general is no constant (differentay).
Therefore, such density is given by the ratio betwthe energyn(D) < M, closed by the symmetric
volume of the ar®, and this volume, that is:

Po(D) =

/j:

m(D)
a)yD3

(2.28)

Recall that a relationship exists between the ¢uresof the universdl,, and the average density,
P, Which is given by Equation 2.26, and therefore:

T, = | (2.29)
Qp,

Therefore, we the make assumption that, in ordestudy the behavior of the accumulation of
points, we can have a radius of curvatlirassociated with the average dengity(D), so that in the
limit when o5(D) — o, we recovefl, — T,, therefore necessarily we define:

T=|H (2.30)

"\ Qo
We see that, if the average density of the accuronla, is constant with distanced(D) = o),
then we obtain thal; curvature is also constant and equaloln order to show this, we applied that

the density (constant) of the accumulation sasisfiee Equation 2.23, with enerdy of the micro-
universe and hence we find that:

If pp(D)=py = [ - T =

=T 2.31
QT,,° ' QM M (2.31)



3 Results
3.1 Obtaining the differential of space-time
From Equation 2.11, we can calculate the line etgrnoé the universe with respect to our reference

frame of W, and therefore, this is equivalent to the difféi@nline with respect to any rest point
(expanding). According to Equation 2.11, the lils&can be written as:

1
12 ' 12 _E
ds=|dt, Tar+ Qe —af1- [1-T |« Dar| D f1-T (3.1)
TO TO To TO TO To

wherer’ are the comoving coordinates in space XYZ (Eq. 2.A0d therefore, the square of the
differential is:

2 oy 2 — 12 2
d¢ =det-| | ar? - T | ae-2 2| Do -|1- [1-1 | aee-
TO TO TO TO TO
2
r (3.2)

rl
(1) :
B LI L P T (R, LI N PR
T, 1_[’ T,° \T, r'?
VT

2
(o]

operating the square of the fifth term on the righequality:

r'dr’
TY ) TY 1) —— (2 (2
ds? =dt?—| — | dF® —| = | dt*-2| — | = |[dtr'dF'-| —— +2 1-_[1-— | |dt?
T, T, T \T, T, T)
(r'jz (3.3)
-
T

T )T 2
1_72 0 0 1—%
T T
and finally, by grouping terms:

12 2 12 1
d? = dt?| 2. [1- 1| - (lj A reg?| - z(lJ(r—Jﬁ (3.4)
To TO 1—L TO TO _LIZ

TOZ 1 -I—2

For the movements in that do not changes the adQle,0, then we can write that:

|2 2 L} 1 1

dg =dtf 2 [1-1 -1| - [T | @D _ T dtdx’ (3.5)
To TO 1_L To rlz

5 T

[o]

This is the square of the differential line for $simagions of the universe. Then we see that the
elements of the tensgr given by Equation 2.13 and 2.14 are:



- e (T ‘1 (T X 1
Yoo _(2 1 F 1}' i __[T_j r2 ] Yoi __(T_J(T_J r2 (3.6)
(o] (o] 1_ (o] o 1_7

T? T?

Moreover, if the distance is much smaller thantthee (Eq. 2.7) then, according to the Taylor
development, we can approximate to:

o ff] ) o)) o f)E) e

Taking the Equations 3.6, the spatial differerdiak (Wald, 1984):
2
2
_ T
de? :(gii - Yo jd)ﬁz = _[TLJ L z| 1+ = 2
g o 1 1
° 1—(rJ [2 - —1}
T, T,

and again, using development of Taylor:
r ? 2
1+ Z{T—J ]d)g (3.9)

dx? (3.8)

ar={T|
TO

These are the equations of an inflationary univeniie a constant increasing is a function of time
of the universeT. Also it is observed that the universe has pasitivrvature according to Robertson-
Walker metric (Wald, 1984), and locally it is f@ ~ 2/T,? = 0).

2 12
ds’ = dt? —(le (1f:<r'2 +re dQZJ . ok=2 (3.10)

3.2 Obtaining of varying G

With the approach of the metric tensor of the EiquaB.7 and the change of variables between
the distance’ and the ar®, we can write that:

2 2202 3 .2
goozl—(r—] :1_(2j w: 1_(2] T, sin"y (3.11)
TO TO To y2 TO D y2
Given the definitions for the Equations 2.23 ar#i2we obtained:
_._QM/(D)T, sin’y

Joo = (3.12)
T w My D )
Finally, with the definition of linear density (E8.25), we can write:
M (D in’
Joo =1~ /D) Qsin’y (3.13)
D | wyu

wherer’ is the module of the ordinary spatial vecter, §’, z’), comoving with universe. Recall that
the metric elemerd,, provides information on the effectiveness of thamie of timeT, when it is an
inner product (Wald, 1984), then we can understd kind of "density of time" in a certain region
of space. Thus, we see that the linear dengibehaves as an normalizing factor of this "density o
time".

From Equation 3.13 shows that as observed withgetarcD, the element,, increases with the
square oD, although the energy closed Byincreases with the cube.

Moreover, if we consider the approximation of hetgmeous universe we can see that generally
the self curvature of the accumulation will follalwe same mathematical development that the whole
universe (from 3.1 to 3.7). Therefore, considethmg Equations 2.30 and 2.28, we obtain that:
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2 2 w2 2
goozl_(r_j - P, QD” sin Y _q_ m(D)| Qsin“ y (3.14)
T u oy D | wyu
wherer’ is the radial position comoving with respect te ttcumulation center. Consequently, there
is a difference from Equation 3.13, and it is thaiv, the elemer,, refers to thdime densityof the
accumulation in particular and not of the univarsgeneral. And since the densplyis greater than
P, then so is the associated curvature (the raiissless thai,).
From now onwards, for convenience we define theigrgonal varyingG,= G/(); 1) as:
_Qsin’y
20,y*
whereQ = 277, W, = 2i(y—siny- cosy)-y® andyis the angle in the componanbf a point on the
accumulation center. Thus, the Equation 3.14 is as:
_26,m(D)
D

where we measure locally (fgr= 0), G, is the "Newton's gravitational constant” (Weinhet§72;
Wald, 1984), which specifically applies as (from Bdl5):

r

, (3.15)

U= 1 (3.16)

=3 (3.17)
4y,
Thus, the gravitational varyir@, can be written according to a funtion(@#, as:
Y,
= WS o 1V g, (3.18)
6(y —siny-coy) 75

In Equation 3.17 we observe that the 'gravitatiammaistantG, depends on the linear density of
energy, lo, and this is not a constant but decreases witl, tion put another wayG, increases.
Knowing that the age of the universeTis= (1.373 + 0.012)- & anys (Hinshavet al, 2009), we can
estimate the relative change@d, which is given by:

G, = 3 T, M - 106, _1, 7310 year™ (3.19)
4 M, G, oT, T,

Moreover, for comoving distancesof the same order that, the approximation 3.14 is not valid,
but it must use the equation 3.6. Therefore, tamehtg,, the metric tensor is:

G0 = [2 -1 —1} - [z1 1- 2500 —1} (3.20)

r

4 Discussion
4.1 Expansion of the universe

In cosmology, Hubble's law relates the velocityaofobject comoving with universe and its distance
from an observer using a slope called Hubble patemid, (Liddle, 2003). The model proposed in
this paper describes a universe that has a lingeansion with time (Equation 2.2).

In fact, from the Equation 2.9 and later it is méel that the expansion is proportional to the
inverse of the age of the universe. Thereforehis ¢ase we have obtained that the Hubble parameter
is H, = 1/T,. Knowing that the age of the universeTjs = (1.373 + 0.012)- #Byears (Hinshavet al.
2009) then it follows that the Hubble paramete71s3 + 0.6 km-$ Mpc* which is consistent with
observations recently measured values around 7km-4"- Mpc* (Spergelet al, 2003; Tegmarlet
al., 2004) and 70 * 3 km*sMpc’ (Spergeket al, 2007).

These results imply that the expansion rate isléquhe light velocity (or very close), as opposed
to proposing other authors, who speak of an actel@rexpansion (Riess al. 1998; Tegmarlet al,
2004; Szabdt al. 2007; Kowalskiet al, 2008, Komatstet al, 2009). However, these works using
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'luminous distances' sometimes are over the ageeofiniverse, which is impossible to suppose that
the speed of light has been constant since thenwafiion can not travel more beyond the speed of
light (Wald, 1984, and Appendix B). It is possiltlat the calculation of distances has been made
taking into account a possible variation of thaviational constant' (Gaztafiagal, 2001).

Moreover, our proposed model describes a positivgature (equation 3.10) which is locally
aproximable to zero, ie, the universe is locallgng, which is compatible with observations (Spergel
et al, 2007). Specifically, we found that it locally is:

k= % = 1070 *year™ (4.1)
wherek is the local curvature an is the age of the universe.

In oter hand, according to observations of the ¢osnfrared background dipole (Smoot, 1992),
there appears to be an absolute reference framesat(Cahill and Kitto, 2003; Munera, 2009).
Therefore, we can say that the Earth is movindbatia370 + 20 km/s with respect to the background
radiation. That is, we can build a reference sysiétim rest axes (according to background radiation)
This 4D coordinate system is perfectly compatiblehwour cosmological balloon model. The
background radiation in some ways represents tiacguof the expanding balloon; and the balloon’s
radial direction (time) represents the directiontlud trajectories of the points with rest. Thust ou
galaxy is moving with a "tangential component" wiéispect to these trajectories with rest.

4.2 Density and mass of universe

The 'gravitational constantG,, was first introduced by Newton in 1687, and todiays known
empirically that the value is approximately 6.6 (Mohr et al. 2005; Fixleret al. 2007). This
value allows us to estimate the total energy of uhverse and the average density, according to
Equations 2.26, 3.17 and 2.23, widtr 21t

3 M
2, =

8T T’

Given the natural transformation of coordinates (L = %) in the international system, and taking
the empirical value of the age of the universe3ag-10 years, we get that:

(4.2)

3Q 6r°c’
M, = T = kg/ 710° y)(3659/ )(24%,)(3600%) = 410 10°kg (4.3
Y TG, &6,6710‘11(/ )A3710"y)(365%,)(247,)(3600%) = 41 g (4.3)
Furthermore, from Equation 4.2 we obtain that thesity of the universe is:
3 —27 -3
=— = 96010 “"kg'm 4.4
Po= g at? g (4.4)

oo
This corresponds to the average density in theatitee called critical densityg. = 9.4 + 0,8 - 10
kg-n?* (Tegmark, 2004; Spergel, 2007), in fact, obsenalder of the average density of the universe
(relative to the critical density) is 1.0050 + 0600(Hinshawet al, 2009), and so there is good
agreement between theory and observations.

4.3 Variation of the 'gravitational constant'

In this work we have seen that we expect a relathange ofG,, about 7.3-10. Then, this value is
consistent with experimental observations: it waasured as the relative variation®fs probably
between 18° and 10° year* (Table 1), but sign depends mainly on whethes iheasured in a fixed
area (e.g. in the solar system) or when measuratifferent distances of the universe (such asgps)s
white dwarfs, etc.). In the first case, the relatirariation ofG is positive (Reasenberg and Shapiro
1978, Williams et al. 1996; Biskupek and Miuller 02, and in the second case seems to be mainly
negative (Kaspeet al. 1994; Garcia-Berro, 1995; Bisnovatyi-Kogan, 20@sl, these latest measures
are generally less accurate.

10



Taula 1. Relative variation o6, measured locally (solar system) and cosmologic@thp shows the
studies that measure an increase and bottom shewsdasuring an decrease.

GldG/dt (year™) Authors M ethodol ogy
(2+7)- 107 Miiller and Biskupek (2007) Lunar laser ranging
<1.6-10° Guentheet al. (1998) Helioseismology
~ 8. 107 Williamset al. (1996) Lunar laser ranging
~10M Krauss and White (1992) Gravitational Lensing
~ 10" Sisterna and Vucetich (1991, 1994) Palaeonichbgvidences
(0+2) - 10?2 Andersoret al. (1991) Planetary radar ranging
(0.2 £0.4) - 108* Hellingset al. (1989) Planetary radar ranging
(1.6 £0.6) - 10* Van Flandern (1981)* Lunar laser ranging
(2+4)-10% Hellingset al.(1983) Solar evolution
~15 . 10d° Andersoret al.(1978) Planetary radar ranging
(6.2 +3.3) - 10° Reasenberg and Shapiro (1978) Planetary radging
~3. 10" Williamset al. (1978) Lunar laser ranging
< 1-10° Chin and Stothers (1976) Solar evolution
(5+1) 10" Dearborn and Schramm (1974) Stability of galaxsters
~4. 10" Morrison (1973) Lunar evolution by using elipses
~4.10° Shapiroet al. (1971) Planetary radar ranging
(0.6 + 2)-10° Bisnovatyi-Kogan (2006) Pulsar system
>—4,1-10° Biesiada and Malec (2004) Pulsar system
>—1-10" Gaztafiagat al.(2001) Luminosity of Supernova la
—(1.4 £2.1)-18" Degl’Innocentiet al. (1996) Globular clusters
—(0.6 + 4.2)-10° Thorsett (1996) Mass of neutron stars
-(1+1)- 106" Garcia-Berro (1995) white dwarfs, (C/O) stratified
—(3%3)-10° Garcia-Berro (1995) white dwarfs, non-stratified
—(9 +18) - 18° Kaspiet al.(1994) Pulsar system
—(1.1#1.1) -18" Damour i Gundlach, (1991) Pulsar system
>_1-10° Wang (1991) Solar luminosity
>_8. 107 McElhinnyet al. (1978) Planets and Dirac creation

The string theory is compatible with negative valuspecificallyG'dG/dt = —1-10" * 'year*
(Wu and Wang, 1986), which involve a creation epd@jrac, 1936 1975). This is that some authors
assume as McElhinngt al. (1978) and Van Flandern (1981) to explain the gtiary acceleration,
avoiding taking the change as posit&édG/dt.

In fact, most works which describe a negative vamaof G'dG/dt assumed thia priori (based
on Dirac, 1938) and therefore in some cases aldngdor an "upper limit" for negative variation,
leaving aside the possibility that the value bdtp@s Also, keep in mind that measures taken tahe
time a larger cosmological scale, the param@igis becoming smaller (equation 3.18), which can
make it appear a relative decreas&pf

According to Table 1, the best estimates of thatire variation ofG are: (6.2 +3.3) - 18 year
"1 (Reasenberg and Shapiro, 1978), (5 + 1) **A@ar" (Dearborn and Schramm, 1974), and (1.6 +
0,.6) - 10" yeaf* (Van Flandern, 1981) in the case (*) to suppose tiere is no creation of Dirac.
That is, it seems more likely that the relativeiation of G to be positive than negative.

For all these reasons, for to make the averagerwitesalues, the negative measures were
discarded. Thus, we obtain the average observ&&eac@nfidence interval i§'dG/dt = (6 + 5)- 10"
year’. This value shows that the model is consistertt wiservations.

4.4 Minimum time and energy

Also, remember that for the initial hypothesis réhiss a minimum interval of time which is related t
the mass of the universe using a quantum way, dicgpto Equation 2.21, as:

MUTO :% (45)
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Moreover, given the Equation 3.17, and making thversion from natural unité = 1 =¢) to
the International System of Units (Sl), we obtdiatt

4 _ _
= hG"Z = 1410"%®segonss 4,310 metres (4.6)
671.C
where the error interval is 10%. In addition, aciog to the Equation 2.22 we obtain the minimum
energy of the universa, i.e.:

0o

mT, =3 (4.7)
making the conversion from to the Internationalt&ysof Units, we obtain:
m(T,) = % =(136+ 001)10°"kg (4.8)

(o}
Therefore, this is the minimum measurable masstlae@fore can be considered the rest mass of
the space-time, or photon. We can see that thisevigl far greater than the limit observed for the
photon, which is <18% kg (Eidelmaret al, 2004).

4.5 The metric singularity

In the Equation 3.20, we see certain the elerggitan be zero by certain conditions. If the total
energyM is closed within a radius RD sufficiently small, then the energy at the distabcalso be
m(D) = M, and the elemeny,, becomes zero at a certain distalzg that is no the radius of
Schwarzschild (1916 and 1916b) whichyjs= 2G, M, but this with a factor of 4/3:

= « —rl = 1 — = ﬂ 4 9
0y =0 1 D 2 (] D, 3rM (4.9)

Note that the elememt, presents possibles values for an interval of dcsta betweenrg/3 and
rv, where this values have a negative sign (densityegative time). The interpretation of this result
can give rise to various speculations about trdgk in time, but we must consider that the
Schwarzschild radius is a physical barrier veffialilt to overcome (because the density of time is
zero; see Eq. 3.13).

o

5 Conclussions

The universe can be described with 5 dimensions amndition of linkage which involves an
additional connection between space and time. Hwieiy happens as if our observations set
artificially an reference instant, and thereforevauld be a point that does not exist in the ursger
All this implies that the expansion and over tinte aimilar phenomena, since the expansion rate is
the same as the speed of time, light velocity=cl). Therefore, the Hubble parameter equals the
inverse of the age of the universg,= 1/T,=71.3+0.6 km-§ Mpc‘l,, which is consistent with more
recent observations.

With the additional hypothesis of the existence @hinimum time interval (time quantum, equal
to 1.4-10%s), we have estimated a theoretical value for gngrdhe universéV, = 4.10 - 18kg
which determines an average value of energy depsityo, = 9.60- 107" kg- mi°, consistent with the
observed relative value (1.005 + 0006 times thicafidensity o).

In addition, this model explains that the "gravdaal constant” G is given by the inverse of the
linear density of energy of the universe, and teeg predicts that is dependent on the age of the
universe. Specifically, the relative variation®fis approximately the inverse of the present agpe. T
predicted value of the relative variatioB {dG/dt = 7.3 - 10" any") supports the observation& (
'dG/dt = (6 £ 5) - 10" any™).

Moreover, from the relationship betwe@rand the energy density of the universe followsveer
limit of the measurement of the mass-energy, seavethink it is related to an underlying rest mass
of the photon. That limit depends on the age ofuiigerse, and the present is estimated to be (.36
0,01) - 10°"kg.
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Finally it is noteworthy that the curvature of theiverse and the curvature of gravitation can be
described by the same geometry of hiperesfereacdording to the simple model proposed. The
gravity can be understood as a local deformatiothefcurvature of the universe in relation to the
extra spatial dimension, but in any case at cosgicdb curvature of the universe depends only on age
and no of gravitation, but rather the contrary: ‘iravitational constant'G, depends on the curvature
of universe.

Open Access This article is distributed under the terms of fBeeative Commons Attribution
Noncommercial License which permits any noncomna¢ngse, distribution, and reproduction in any
medium, provided the original author(s) and soareecredited.

Appendices
A Volumetric solid angle

Taking hyperspherical coordinates, we can calculaevolume (V) corresponding to the universe
(hypersurface). Therefore, we can change coordireste

u=T-coy

z=T -siny-cowr

X =T -siry-sina-cog

y =T -sirny-sina-sinG
where T is the age of the universe, like hypergphkeradius, whilsta, S and y are the angles of a
point of the hiperesfera. With the system of equeiA.1, we identify the ordinary space is V(x* +
y?+ 7Z2) = T-siny, while the spacial arD at the universe i® = T-. In according to an appropriate

coordinate transformation, associated with theesystf equations A.1, the differential volundd, is
as:

(A.1)

dVv =T?-sirfy-sio-dy-da-ds (A.2)
where the domain of the triple integral goes fromo @rtfor S, fromtto O for a and for O tartfor y.
With this we can calculate the volu€)) closed angler as:

V(y) =[fdV =T?* % (y—siny- cosy)|gcosa|?r-,8|§" (A.3)

V(y) =T%-2n(y - siny-coy) (A.4)
Furthermore, we define the local volumetric solngle, cj, according to the relationship between the
volume and the cube of the distancey@s:

Vv . _
w, = ég) =2n(y —siny-coy) y° (A.5)
With such a definition, it is easy to see thatiitst satisfies:

UTO w, =gﬂ5 w, (A.6)

B Timedilation and maximum velocity

According to Equation 2.6, the vector of positisrexpressed in function of timeand ordinary
positionr is:
s:(t, r, us) (B.1)
whereus is the component of the vectoss, which is:
u, = —T(1—1/1— /T) (B.2)

whereT is the age of the universe. Therefore, the difféat of the position is:
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ds=(dt, vdt, u.dt) (B.3)
where i is the derivative with respect to the time of comgat u of the vector of positiors.

According to the Equation B.2, it is a functiontlé ordinary positiom, the age of the univerde and
the ordinary velocityy:

2
o, = 3% =1-.1-1 —;L(v—Lj (B.4)
dt T° 1-./1- %2 T T

One approach af; is:

2 2 2
r r r r r r
u, = +1+ —|V—=|=- +—=Vv B.5
SZTZ(ZTZJT[ Tj 212 T (B.5)
Using the Equation B.1 we can define the diffentif proper timedt’ as that interval of time
measured in a system where the ordinary velacityd the position are zero, ie:
ds=(dt’, 0, 0) (B.6)
whereds’ is the differential of position, measured fromstiheéference system. Obviously, the length
ds” must be equal td<, therefore proper timét’ is related to the timdt as:
dt?=de?fi-v? -u?) = de?fi-w?) (8.7)
wherew is the total space velocity, ie? = v* + ii>. From Equation B.7 and rewriting the relationship
beetwerdt anddt’, we obtain:

dt'

Vi-w?
Therefore, an observer measure a real tithé@ and only if w < 1, so the limit velocity of the
information is w = 1, as in Einstein's special tiglty. Thus, the expansion of the observable ursge
has a maximum angle, where the velocity is 1. bteoto find the angle using the Equation B.3, we
can use/T = sin yand the object is comoving with respect to unieetsen the velocity of change of
yis zero, then:

u, = —T(l— J1- f%z): -T@l-cosy) -  u,=-(1-cosy) (B.9)

1=w?=v?+uS° = 2(1—0052 y) - =2 (B.10)

dt = (B.8)

were we use the Equation 2.9, ves1/T.
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